1,398 research outputs found

    Galactic Winds

    Get PDF
    Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and are deposited into the intergalactic medium. New observations are revealing the ubiquity of this process, particularly at high redshift. We describe the physics behind these winds, discuss the observational evidence for them in nearby star-forming and active galaxies and in the high-redshift universe, and consider the implications of energetic winds for the formation and evolution of galaxies and the intergalactic medium. To inspire future research, we conclude with a set of observational and theoretical challenges.Comment: Paper to be published in 2005 Annual Review of Astronomy & Astrophysics; revision based on comments from readers and production editor. Figure 1 was replaced to show the proper density scale. A PDF file combining both text and figures is available at http://www.astro.umd.edu/~veilleux/pubs/araa.pd

    Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion

    Full text link
    We have performed an absorption-line survey of outflowing gas in 78 starburst-dominated, infrared-luminous galaxies. This is the largest study of superwinds at z < 3. Superwinds are found in almost all infrared-luminous galaxies, and changes in detection rate with SFR--winds are found twice as often in ultraluminous infrared galaxies (ULIRGs) as in less-luminous galaxies--reflect different wind geometries. The maximum velocities we measure are 600 km/s, though most of the outflowing gas has lower velocities (100-200 km/s). (One galaxy has velocities exceeding 1000 km/s.) Velocities in LINERs are higher than in HII galaxies, and outflowing ionized gas often has higher velocities than the neutral gas. Wind properties (velocity, mass, momentum, and energy) scale with galaxy properties (SFR, luminosity, and galaxy mass), consistent with ram-pressure driving of the wind. Wind properties increase strongly with increasing galactic mass, contrary to expectation. These correlations flatten at high SFR (> 10-100 M_sun/yr), luminosities, and masses. This saturation is due to a lack of gas remaining in the wind's path, a common neutral gas terminal velocity, and/or a decrease in the efficiency of thermalization of the supernovae energy. It means that mass entrainment efficiency, rather than remaining constant, declines in galaxies with SFR > 10 M_sun/yr and M_K < -24. Half of our sample consists of ULIRGs, which host as much as half of the star formation in the universe at z > 1. The powerful, ubiquitous winds we observe in these galaxies imply that superwinds in massive galaxies at redshifts above unity play an important role in the evolution of galaxies and the intergalactic medium.Comment: 68 pages, 20 figures in AASTeX preprint style; to appear in September issue of ApJS; Figure 17 replaced with correct versio

    Three-Dimensional Simulations of a Starburst-Driven Galactic Wind

    Full text link
    We have performed a series of three-dimensional simulations of a starburst-driven wind in an inhomogeneous interstellar medium. The introduction of an inhomogeneous disk leads to differences in the formation of a wind, most noticeably the absence of the ``blow-out'' effect seen in homogeneous models. A wind forms from a series of small bubbles that propagate into the tenuous gas between dense clouds in the disk. These bubbles merge and follow the path of least resistance out of the disk, before flowing freely into the halo. Filaments are formed from disk gas that is broken up and accelerated into the outflow. These filaments are distributed throughout a biconical structure within a more spherically distributed hot wind. The distribution of the inhomogeneous interstellar medium in the disk is important in determining the morphology of this wind, as well as the distribution of the filaments. While higher resolution simulations are required in order to ascertain the importance of mixing processes, we find that soft X-ray emission arises from gas that has been mass-loaded from clouds in the disk, as well as from bow shocks upstream of clouds, driven into the flow by the ram pressure of the wind, and the interaction between these shocks.Comment: 37 pages, 16 figures, mpg movie can be obtained at http://www.mso.anu.edu.au/~jcooper/movie/video16.mpg, accepted for publication in Ap

    New Constraints on the Escape of Ionizing Photons From Starburst Galaxies Using Ionization-Parameter Mapping

    Full text link
    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [SIII]/[SII] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrow-band images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40+/-5 degrees (0.4 ster), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star-formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (> 3 Myr) for mechanical feedback to have cleared optically thin passageways in the ISM, but young enough (< 5 Myr) that the ionizing stars are still present.Comment: Accepted for publication in Ap
    • …
    corecore